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Variational formulation and gauge symmetries
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Abstract

On the basis of gauge principle in the field theory, a new variational formulation is
presented for flows of an ideal fluid. The fluid is defined thermodynamically by a
mass density and an entropy density invariant along particle trajectories (by defini-
tion of ideal fluid). Flow fields are characterized by symmetries of translation and
rotation. A Lagrangian functional is defined in terms of kinetic energy and internal
energy, and the action is defined by its integral with respect to time. Noether’s
theorem leads to Euler’s equation of motion and an energy equation. Requirement
of the Lagrangian with respect to rotational gauge transformations of particle co-
ordinates (i.e. in Lagrange space) results in the invariance of vorticity transformed
to the Lagrange space. This implies that the vorticity is a gauge field.

Taking into account invariances of mass, entropy and vorticity in the Lagrange
space, one can introduce three additional Lagrangians of the form of total time
derivative. The variational principle of the extended action leads to the the conti-
nuity equation, the entropy conservation equation, and the vorticity equation. Rota-
tional component of velocity is defined naturally with this formulation. In addition,
there exits a close relation between the helicity and the Lagrangian associated with
the vorticity, both of which are regarded as Chern-Simons invariants.

Present formulation provides a basis on which the transformation between the
Lagrangian space and the Eulerian space is determined uniquely. In most of tra-
ditional formualtions, the continuity equation and the entropy equaiton are taken
into account as constraints by using Lagrange multiplier whose physical meaning is
not clear. Thus, present formulation is consistent as a whole for description of flows
of an ideal fluid.
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1 Introduction

Fluid mechanics is a field theory of Newtonian mechanics with Galilean sym-
metry. It should be covariant under transformations of the Galilei group. Two
symmetries (i.e. transformation invariances) are known as subgroups of the
Galilei group: translation (space and time) and space-rotation. A guiding prin-
ciple in physics is that physical laws should be expressed in a form that is
independent of any particular coordinate system. In the present paper, we
seek to formulate flows of an ideal fluid with the action principle which has
a formal equivalence with the gauge theory in physics (e.g.Weinberg 1995).
The gauge theory provides a basis for reflection on similarity between fluid
mechanics and other physical fields.

Studies following the above theme have been carried out recently (Kambe
2003; Kambe 2007; Kambe 2008a, b), in order to investigate possiblity whether
flow fields of a fluid can be formualted according to the gauge theory. Outcome
of those preliminary attempts is satisfactory and encourages to proceed to
more fundamental formulation from the view point of gauge symmetries of
flow fields. Present paper is an endeavor according to the above philosophy.

First, a Lagrangian functional is defined (as in Seliger & Witham 1968) by a
combination of total kinetic energy and internal energy in the space of par-
ticle coordinates (denoted as a space), called also as Lagrangian description
(in §2.2). The action is given by its time integral. Noether’s theorem leads to
the equation of motion and an energy equation (§2.3). In most of traditional
formulations (Herivel 1955; Serrin 1959; Eckart 1960; Seliger & Witham 1968;
Salmon 1988), the continuity equation and the equation of isentropy 1 are
added as constraints by using Lagrange multipliers to the action integral.
However, in the new formulation, those equations are derived from the varia-
tional principle, rather than being given as constraints. To that end, additional
Lagrangians are introduced by symmetry consideration.

In the present formulation, the newly added Lagrangians are determined so
that it is invariant with respect to both translational and rotational transfor-
mations. For that, the following three properties are taken into consideration.
(a) Fluid mass is an invariant of motion. (b) Entropy per unit mass is another
invariant of motion by the definition of an ideal fluid. And, (c) vorticity Ωa in
the a-space is invariant, which is derived by requirement of gauge invariance of
the action in the a-space (§3.2). Thus, three Lagrangians are newly introduced
(§2.5 and §3.4), all of which have characteristic forms such that they are of
the form of total time derivative. Hence, their action integrals are integrated

1 Homentropy means that fluid entropy is uniform throughout the space, while
isentropy means that each fluid particle keeps its entropy value along its trajectory,
but fluid is not necessarily homentropic.

2



with respect to time in the Lagrangian description. So that, the newly added
terms do not influence the Euler-Lagrange equation in the a-space. However,
in the space of Eulerian coordinates denoted by x, the continuity equation
and an entropy equation are derived from the action principle (§5.1), since
the time derivative of the Lagrangian description is replaced with the mate-
rial derivative including convection velocity and mass density is a function of
x and time t. Noether’s theorem in the x-space reduces to the conservation
equation of momentum (§5.2).

According to variations of the Eulerian description, if the fluid is homentropic,
the action principle of an ideal fluid results in potential flows (§5.1; Herivel
1955). It is generally understood that, even in such a homentropic fluid, it
should be possible to have rotational flows. In fact, this is a long-standing
problem. Lin (1963) tried to resolve this difficulty by introducing Lin’s con-
straint as a side condition, imposing invariance of the Lagrange coordinates
a along particle trajectories, and the constraints are taken into account by
using Lagrange multipliers, called potentials. However, physical significance
of those potentials is not clear (Bretherton 1970): for example, it is not clear
why the Lagrange multiplier for the continuity equation becomes the velocity
potential for flows of a homentropic fluid.

The present formulation provides a key to resolve the above issue. Namely,
a rotational component of velocity field is derived in §5.1 naturally from the
Lagrangian LA associated with the third property (c). In the case of an incom-
pressible fluid, the rotational component w∗ is represented as w∗ = ∇× Ψ∗
(§6.3), as is usually assumed in incompressible fluid mechanics. The property
(c) implies that the vorticity is a gauge field associated with the rotation sym-
metry of the flow field (§3.2), and the vorticity equation is derived from LA in
§5.1.

A gauge theory of rotation invariant Lagrangian with an internalO(3)-symmetry
was studied for the Bohr model of nuclear collective rotation of a finite num-
ber of modes (Fujikawa & Ui 1986). There is a similarity between this system
(of five field variables) and the fluid flows (of infinite dimensions). In particu-
lar, both systems are considered a dynamical system. The gauge field of the
nuclear collective rotation was found to be the angular velocity.

Helicity H is defined by a space integral of inner product of vorticity and ve-
locity, and known to be a topological invariant. This is defined mathematically
as a secondary invariant satisfying two conditions (Chern 1979, Appendix 4),
called also the Chern-Simons invariant (Jackiw 1984). It is shown in §6.1 that
H in fact satisfies coresponding two equations, (78) and (80). The helicity H
and the Lagrangian LA are closely related to each other in the sense that,
when one exists, then the other also exists (§6.4). It is verified that both of
the integrals are time-invariant, by using the time-invariance of Ωa. This im-
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plies that the Lagrangian LA is also the secondary invariant (i.e. another one
of Chern-Simons invariants). In fluid mechanics, although the helicity H is
investigated in detail, the Lagrangian LA has never been considered explicitly.

Local transformation from the Lagrangian a-space to the Eulerian x-space is
determined by nine elements of the 3×3 matrix ∂xk/∂al at each point. Three
relations between the vorticity components in the a-space and those in the
x-space are required for unique transformation, in addition to the well-known
six relations of velocity and acceleration in both spaces. This fact that is not
awared sufficiently so far is considered in §2.4 and §7.

As a note, a recent study (Constatin 2001) of an Eulerian-Lagrangian local
approach for incompressible fluids is to be remarked, although this is neither
based on variational formulation, nor transformation uniquness is considered.
Rather, this paper is interested in an open question if any solution of blow-up
to the Euler equation. Another work to be noted is the monograph (Jackiw
2002), applying the ideas of particle physics to fluid mechanics in terms of
Hamiltonian and Poisson brackets both relativistically and nonrelativistically.
Relativistic Lagrangian approach is also taken by Soper (1976).

Last section 8 investigates whether the Lagrangian density Λ defined in the
present analysis has in fact symmetries of translation and rotation. It is con-
firmed there that the gauge symmetries are satisfied by Λ. Thus, the present
formulation is reasonable in physical senses and consistent as a whole for de-
scription of flow fields of an ideal fluid.

2 Equations of Lagrange description

2.1 Particle coordinates and definition of an ideal fluid

First of all, we consider a variational problem of the action defined by using
a Lagrangian functional represented with the particle coordinates, also called
as Lagrangian coordinates, which are denoted as a = (a1, a2, a3) = (a, b, c).
Time variable τ is used in combination with (a, b, c). 2

Physical space coordinates (i.e. Eulerian coordinates) are written as x =
(x, y, z) = (x1, x2, x3) with t denoting the time. Position coordinates of a
fluid particle of the label a are denoted by Xk(aμ)，or X(τ,a) = (Xk) =

2 When independent variables are written as aμ = (τ, a1, a2, a3), the parameter μ
(or a greek letter) takes the values of 0,1,2,3, where a0 = τ . Roman letters such as
k or l take 1,2,3.
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(X1, X2, X3) = (X, Y, Z). Particle velocity is given by vk = ∂τX
k = ∂Xk/∂a0,

or Xk
0 .

Mass elelment dm in a volume elelemt of physical space d3x = dx dy dz is
defined by d3a = da db dc in the space of Lagrange coordinates. Namely,

dm = d3a = ρ d3x, ρ : mass density.

The mass dm is an invariant of motion. Hence the following must be always
satisfied (where ∂τ = ∂/∂τ)：

∂τ (dm) ≡ ∂τ (d
3a) = 0 . (1)

From the relation dm = da db dc = ρ dX dY dZ, the mass density is given by

ρ =
1

J
, J =

∂(Xk)

∂(al)
=
∂(X1, X2, X3)

∂(a1, a2, a3)
=
∂(X, Y, Z)

∂(a, b, c)
, (2)

where J is the Jacobian of the transformation, [a vs. x].

An ideal fluid is defined by one in which there is no dissipaton of kinetic
energy during motion. Therefore, the entropy s per unit mass is invariant, i.e.
τ -independent and s = s(a, b, c). Thus, we have the following:

∂τ s = 0 . (3)

According to the thermodynamics with the internal energy ε per unit mass,
the enthalpy h is defined by h = ε+ p/ρ per unit mass. For a density change
δρ and an entropy change δs, changes of ε and h are given by

δε = (p/ρ2)δρ+ Tδs, δh = (1/ρ)δp+ Tδs,

where p is the pressure, and T the temperature. Setting δs = 0, we have

δε = (δε)s =
p

ρ2
δρ, δh = (δh)s =

1

ρ
δp, (4)

where ( · )s denotes variation with s fixed. These are relations between varia-
tions of state variables of an ideal fluid.
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2.2 Lagrangian

The Lagrangian expressed in terms of the particle coordinates is defined by 3

LT =
∫
Ma

1
2
Xk
τ X

k
τ d3a −

∫
Ma

ε(ρ, s) d3a . (5)

Action integral I is given by

I =
∫
Ma⊕Iτ

Λ(Xk
μ, X

k) d4a, d4a = dτ d3a, (6)

where the Lagrangian density Λ is defined by

Λ = Λ(Xk
μ, X

k) ≡ 1
2
Xk

0 X
k
0 − ε(Xk

l , X
k) (7)

(k, l = 1, 2, 3). Since the density ρ depends on Xk
l ≡ ∂Xk/∂al from (2) and

s depends on Xk(a), we have ε(ρ, s) = ε(Xk
l , X

k) in the last equation. Inte-
gration domain of a is denoted by Ma chosen arbitrarily, and the interval of
τ -integration is Iτ = [τ1, τ2].

2.3 Euler-Lagrange equations

By the action principle, it is required that the action I is invariant for the
variation of Lagrangian density Λ(Xk

μ, X
k) with respect to arbitrary transfor-

mation Xk → Xk + ξk, where ξk(aμ) (k = 1, 2, 3) are arbitrary functions of
aμ. This results in the following Euler-Lagrange equation (Kambe 2008a):

∂

∂aμ

(
∂Λ

∂Xk
μ

)
− ∂Λ

∂Xk
= 0, μ = 0, · · · , 3; k = 1, 2, 3, (8)

where Xk
μ = ∂Xk/∂aμ, and the variations ξk(aμ) are assumed to vanish on the

boundary of the domain Ma ⊕ Iτ .

In this formulation, an energy-momentum tensor T νμ is defined by

T νμ ≡ Xk
μ

(
∂Λ

∂Xk
ν

)
− Λ δνμ , (9)

3 Traditionally (Herivel 1955; Serrin 1959; Eckart 1960; Seliger & Witham 1968;
Salmon 1988), Lagrangian includes constraints with Lagrange multipliers, in addi-
tion to LT. In this regard, the present LT is a new form, which will be clarified later
in §4.3.
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Using this, the Noether theorem is given by Kambe (2008a)

∂

∂aν
T νμ = 0 . (10)

The following (a) and (b) give components of this equation (Eckart 1960).

(a) For μ �= 0 (aμ = α), the equation ∂νT
ν
μ = 0 results in the following:

∂τVα + ∂α F = 0 (11)

Vα≡XαXτ + YαYτ + ZαZτ , (12)

where F = −1
2
v2 + h. Remaining (two) equations are obtained by cyclic

permutation of α among (a, b, c). Integrating (11) with respect to τ from 0 to
t, we obtain the following Weber’s equation (Lamb 1932, §15):

Vα(t,a) =Vα(0,a) − ∂αχ, (13)

∂χ

∂τ
=−1

2
v2 + h ≡ F, v2 = (Xτ )

2 + (Yτ )
2 + (Zτ )

2. (14)

The equation (12) expresses the velocity Vα transformed to the a-space (§3.3).
Its time evolution is given by (13) and (14) for initial values Vα(0,a) and
h(0,a).

(b) For μ = 0, we obtain an enrgy equation:

∂τH + ∂a

[
p
∂(X, Y, Z)

∂(τ, b, c)

]
+ ∂b

[
p
∂(X, Y, Z)

∂(a, τ, c)

]
+ ∂c

[
p
∂(X, Y, Z)

∂(a, b, τ)

]
= 0, (15)

where H = 1
2
v2 + ε. Corresponding equation in the Eulerican description is

given by (77) of §5.2.

From (11), we obtain the following equation for the acceleration Aα(τ,a):

Aα ≡ XαXττ + YαYττ + ZαZττ = −∂αh. (16)

This is known as the equation of motion in the Lagrange form (Lamb 1932,
§13), where the following equation is used for its derivation:

∂τVα = Aα +Xk
ταX

k
τ = Aα + 1

2
∂α(X

k
τ )

2 = Aα + ∂α(
1
2
v2). (17)

The equation (16) is immediately transformed to

Xττ = −1

ρ
∂x p, ∂xp =

∂α

∂x

∂p

∂α
. (18)
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Since the term Xττ on the left side is the acceleration of a particle a, this
equation is nothing but the Euler’s equation of motion.

2.4 Freedom of transformation between a and x

There is an arbitrariness in the transformation from a-space to x-space. In
regard to the equation (16), the expression of the middle side has a form of
inner product of two vectors: a vector of particle acceleration (Xττ , Yττ , Zττ )
in the x-space and a direction vector (Xα, Yα, Zα) in the x-space represent-
ing the α-axis of the a-space. In other words, the equation (16) is invari-
ant with respect to rotational transformations of the displacement vector
ΔX = (ΔX,ΔY,ΔZ) of a particle in the x-space.

There is the same sort of freedom for the particle velocity Vα(τ,a) of (12) as
well. Later, we will consider another (third) transformation of vorticity for the
uniqueness of transformation between a and x spaces.

2.5 Trivial Lagrangians

Mass d3a(a) and entropy s = s(a) satisfy the invariance equations (1) and
(3). Using these properties, one can introduce the following two Lagrangians:

Lφ = −
∫
M
∂τφ d3a, Lψ = −

∫
M
s ∂τψ d3a, (19)

where φ(a, τ) and ψ(a, τ) are scalar fields associated with mass and entropy.
The Euler-Lagrange equation is unchanged, even if these are added to LT of
(5).

In fact, adding Lφ and Lψ to LT, we have the following total Lagrangian:

L ∗
T = LT −

∫
∂τφ d3a −

∫
s ∂τψ d3a. (20)

In addition, the action integral is defined by

I =
∫ τ2

τ1
L ∗

T dτ =
∫

dτ LT −
∫

dτ
∫
∂τφ d3a −

∫
dτ
∫
s ∂τψ d3a. (21)

The second integral on the right hand side Iφ =
∫

dτ
∫
∂τφ d3a can be in-

tegrated with respect to τ , and may be expressed as
∫
[φ]d3a, where [φ] =

φ|τ2 − φ|τ1 is the difference of φ at two times τ2 and τ1 and independent of
the times between those two. Likewise, the third integral can be written as
Iψ =

∫
[ψ]s d3a, since s is independent of τ . This means that the two scalar
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fields φ and ψ do not appear in the Euler-Lagrange equation, which is derived
by the variational principle of the action I with varied fields at inner times
τ ∈ (τ1, τ2). Namely, the Euler-Lagrange equation is invariant by the addition
of Iφ and Iψ. In this regard, Lφ and Lψ may be called as trivial Lagrangians.
However, these are non-trivial for the variation of fields in the Eulerian space,
as will be seen in §5.1.

3 Gauge invariance and differential forms

3.1 Particle permutation

The Lagrangian (5) has a parameter invariance. Consider a transformation of
parameters from a = (a, b, c) to a′ = (a′, b′, c′) = a′(a, b, c). In this transfor-
mation, the Jacobian Ja must satify the following:

Ja ≡ ∂(a′, b′, c′)
∂(a, b, c)

= 1. (22)

For, the mass dm of any small element d3a must be invariant in this transfor-
mation. Then, the condition Ja = 1 is required, since we must have dm = d3a
and dm = d3a′ = Jad

3a.

The parameters (a, b, c) are coordinates of a fluid particle. Hence, the above
parameter invariance is understood as the invariance of particle permutation.
From another point of view, there exists an arbitrariness for the definition of
coordinates. This is understood as a gauge transformation with respect to the
coordinate transformation a → a′. Therefore, the above is interpreted as a
gauge invariance of the Lagrangian (5).

3.2 Gauge invariance in the a space　

Provided that the parameter transformation is expressed by (ak)′ = ak + δak

for small variations δak, first-order variation of the Jacobian Ja must satisfy

δ

(
∂(a′, b′, c′)
∂(a, b, c)

)
=

∂

∂ak
δak = 0, (23)

from (22). Hence, the varaition vector δa = (δak) can be represented by using
a certain vector potential δΦ as

δa = ∇a × δΦ, (24)
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where

∇a ≡ (∂a, ∂b, ∂c) = (∂a1 , ∂a2 , ∂a3).

Because div(curl δΦ) = 0, the equation (23) is satisfied. Since curl δa �= 0, the
transformation a → a′ includes rotational transformations.

Variation of the action I of (6) can be written as

δI =
∫
δΛ(Xk

μ, a
k) d4a =

∫ τ2

τ1
dτ

∫ (
Xk
τ

∂

∂al
Xk
τ −

∂

∂al
ε
)
δal d3a, (25)

where, using (12) and (16),

Xk
τ

∂

∂al
Xk
τ = Xk

τ

∂

∂τ
Xk
l = −Xk

ττX
k
l +

∂

∂τ

(
Xk
τX

k
l

)
= ∂l h+ ∂τVl.

Substituting this into (25), we obtain

δI =
∫

dτ
∫ (

∂τVl +
∂

∂al
(h− ε)

)
δal d3a.

Substituting (24),

δI =
∫

dτ
∫
Ma

(
∂τV a + ∇a(h− ε)

)
· (∇a × δΦ) d3a,

where V a = (Va, Vb, Vc). Carrying out integration by parts with respect to the
coordinate a, we obtain

δI =
∫

dτ
∫
Ma

(
∂τ (∇a × V a)

)
· δΦ d3a +

∫
dτ [IntS], (26)

where IntS denotes integrations over the surface Sa bounding Ma. Invriance
of the action, δI = 0 for arbitrary variation δΦ, requires the following:

∂τ Ωa = 0, where Ωa ≡ ∇a × V a. (27)

It will be shown in the next section that Ωa is the vorticity transformed to
the a-space.

From the above consideration, invariance of I means the invariance with re-
spect to particle permutation, from which time-invariance of the vorticity in
the a-space is derived by the requirement of gauge invariance of the action.
This implies that the vorticity Ωa in the a-space is in fact a gauge field.
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3.3 Representations by differential forms　

We consider differential forms in terms of both Lagrangian coordintaes (a, b, c)
and Eulerian coordintaes (x, y, z). The variables Vα (α = a, b, c) defined by (12)
are the velocity components transformed to the a-space. The velocities in the
x-space are written as v = (u, v, w) = (Xτ , Yτ , Zτ ). Then, one can define
one-form V1 with 4

V1 = u dx+ v dy + w dz (written as v · dx) (28)

= Va da+ Vb db+ Vc dc (written as V a · da). (29)

Owing to the equation (12), it is seen that the expression (28) is equal to
(29). Applying exterior differentiation to (28) and (29), we obtain two-form
Ω2 = dV1, defined by

Ω2 = dV1 =Ωa db ∧ dc+ Ωb dc ∧ da+ Ωc da ∧ db = Ωa · S2 (30)

=ωx dy ∧ dz + ωy dz ∧ dx+ ωz dx ∧ dy = ω · s2, (31)

Ωa ≡ ∇a × V a = (Ωa,Ωb,Ωc),

ω ≡ ∇× v = (ωx, ωy, ωz) (vorticity),

where s2 and S2 are defined at the footnote. It is seen that Ωa is the vorticity
transformed to the a-space.

Writing (11) in the one-form style, we have

∂τV1 + dF = 0. (32)

Taking exterior derivative, we obtain the following two-form equation:

∂τ dV1 + d2F = ∂τΩ
2 = 0, (dV1 = Ω2, d2F = 0). (33)

The equation ∂τΩ
2 = 0 is equivalent to ∂τ Ωa = 0 of (27). Namely, we have

the expression Ωa = Ωa(a).

3.4 Another trivial Lagrangian　

Introducing a vector potential Aa = (Aa, Ab, Ac) in the a-space, we define a
corresponding one-form as follow:

A1 = Aa da+ Ab db+ Ac dc

4 dx = (dx, dy, dz), da = (da, db, dc), and s2 = (dy ∧ dz, dz ∧ dx, dx ∧ dy),
S2 = (db ∧ dc, dc ∧ da, da ∧ db).
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Using this, we define a three-form K3 by the exterior product of A1 and Ω2:

K3 = A1 ∧ Ω2 = 〈Aa, Ωa〉 d3a , d3a = da ∧ db ∧ dc, (34)

where 〈Aa, Ωa〉 = AaΩa + AbΩb + AcΩc.

Let us regard K3 as a three-form over the four dimensional manifold (τ,a)
and define the external derivative d4 with

d4 ≡ dτ ∧ ∂τ + d , (35)

by writing its components, where d denotes the external derivative in the
three-space a = (a, b, c). Taking the differentiation d4 of K3,

R4 ≡ d4K
3 = d4A

1 ∧ Ω2 − A1 ∧ d4Ω
2 = dτ ∧ (∂τA

1) ∧ Ω2. (36)

where we used d4Ω
2 = 0 since ∂τΩ

2 = 0 and dΩ2 = d2V1 = 0, and used
dA1 ∧ Ω2 = 0 since this is a four-form on the three-space (a, b, c). Like (34),
we obtain

R4 = 〈∂τAa, Ωa〉 dτ ∧ d3a = ∂τ 〈Aa, Ωa〉 dτ ∧ d3a. (37)

where (27) is used.

Thus, owing to the invariance of the vorticity ∂τΩa = 0, one can define another
trivial Lagrangian LA by an integral of an exact form −d4K

3 as follows:

LA = −
∫
M
〈∂τAa, Ωa〉 d3a = −∂τ

∫
M
〈Aa, Ωa 〉 d3a, (38)

where Ωa is a function of a only. The negative sign is added as a matter of
convenience.

This new Lagrangian LA is invariant with respect to both translational and
rotational transformations, as explained in §8 later. Obviously, the new action
obtained from LA can be integrated with respect to τ . Hence, likewise the cases
of Lφ and Lψ of (19), the vector potential Aa does not appear in the Euler-
Lagrange equation (in §2.3). However, as considered below, the Lagrangian
LA is non-trivial in the variations represented with variables and fields in the
x-space.
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4 Equations of Euler description

4.1 Eulerian description

Independent variables in the Eulerian description are (t, x, y, z), the variables
in the physical space. According to the gauge-theoretic formulations of fluid
motion (Kambe 2007; Kambe 2008a, b), the time derivative ∂τ is represented
by the following operator Dt:

∂τ = Dt, Dt ≡ ∂t + vk∂k = ∂t + v · ∇ ,

where the vector v = (u, v, w) denotes the particle velocity ∂τX :

v(X, t) = ∂τX(τ,a) =
d

dτ
Xa(τ).

The velocity is also defined by

v = Dtx . (39)

These are considered later in §8.2 together with the gauge invariance of Dt.

4.2 LA in Eulerian space

In §3.3, the velocity one-form V1 and vorticity two-form Ω2 are defined. Next,
with introducing a vector potential A = (Ax, Ay, Az) in the x-space, let us
define its one-form version by

A1 = Ax dx+ Ay dy + Az dz. (40)

Taking exterior product of A1 with Ω2,

A1 ∧ Ω2 = 〈A, ω〉 d3x , (41)

where 〈A, ω〉 = Axωx+Ayωy+Azωz. Equating the two equivalent three-forms
(34) and (41), we obtain 〈Aa,Ωa〉d3a = 〈A,ω〉d3x.

Let us define a Lie-derivative operator LW by

∂τ ≡ LW = L∂t+V = ∂t + LV , (42)

where V = u∂x + v∂y + w∂z. Since ∂τΩ
2 = 0, we obtain the following:

0 = ∂τΩ
2 = LWΩ2 = ∂tΩ

2 + LVΩ2 = L∗
W [ω] · s2, (43)
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where, by using ∇ · ω = 0,

L∗
W [ω] ≡ ∂tω + ∇× (ω × v). (44)

Hence, we obtain the following vorticity equation:

∂tω + ∇× (ω × v) = 0. (45)

Using (42) and (43), we obtain

∂τ
[
〈Aa, Ωa 〉 d3a

]
= LW

[
A1 ∧ Ω2

]
=
[
LW A1

]
∧ Ω2. (46)

Furthermore, the right hand side is given by 〈LWA, ω〉 d3x. Lie derivative of
the one-form A1 is given by

LWA1 ≡ (∂tAi + vk∂kAi + Ak∂iv
k) dxi = −Ψi dx

i = −Ψ1, (47)

−Ψi≡ (LWA)i = ∂tAi + vk∂kAi + Ak∂iv
k (48)

(see e.g.Frankel 1997, §4.2). Thus, the Lagrangian LA of (38) can be repre-
sented in the x-space as follows:

LA = −
∫
M
〈LWA, ω 〉 d3x =

∫
M
〈Ψ, ω 〉 d3x, Ψ ≡ −LWA. (49)

Substituting ω = ∇× v and carrying out integration by parts, we obtain

LA =
∫
M
〈∇ × Ψ, v 〉 d3x + IntS = −

∫
M
ρ 〈b, v 〉 d3x + IntS, (50)

where IntS denotes integrations over the surface S bounding M . This is the
Lagrangian LA in the Eulerian space, where

ρ b ≡ −∇× Ψ = ∇× (LWA). (51)

Substituting (48) into (49), and carrying out integration by parts, we obtain

LA =
∫
M
〈A, L∗

W [ω] 〉 d3x, (52)

where surface integrals are omitted.

It will be shown later that the Lagrangian LA of (49) or (52) yields a rotational
component of velocity field and in fact leads to a term generating non-zero
helicity. In traditional formulations, this kind of Lagrangian is not considered.
Then, in order to generate a rotational velocity field, an ad hoc term had to
be introduced.
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4.3 Lagrangians in Eulerian space

This section summarizes the above analysis on the Lagrangians of Eulerian
space. In addition to the Lagrangian LT defined in §2.2, one can add two
Lagrangian functionals considered in §2.5:

Lφ = −
∫
M

Dtφ ρ d3x, Lψ = −
∫
M
sDtψ ρ d3x, (53)

and furthermore the one introduced in the previous section:

LA =−
∫
M
〈LWA, ω 〉 d3x =

∫
M
〈Ψ, ω 〉 d3x =

∫
M
〈∇ × Ψ, v 〉 d3x + IntS (54)

=−
∫
M
ρ 〈b, v 〉 d3x + IntS =

∫
M
〈A, L∗

W [ω] 〉 d3x + IntS. (55)

Writing the total Lagrangian in the x-space as

L ∗
T =

∫
M

Λ(v, ρ, s, φ, ψ,A) d3x,

its density Λ is given by

Λ≡ 1
2
ρ vkvk − ρε(ρ, s) − ρDtφ− ρsDtψ + 〈A, L∗

W [ω] 〉 (56)

= 1
2
ρ 〈v, v 〉 − ρ ε− ρ (∂t + v · ∇)φ− ρ s (∂t + v · ∇)ψ + 〈∇ ×Ψ, v 〉 + Div , (57)

where Div is of divergence forms which are transformed to IntS terms of L ∗
T .

This is the total Lagrangian density in the x-space. Action I is defined by

I =
∫

Λ(v, ρ, s, φ, ψ,A) d4x, d4x = dt d3x.

Note: In classical mechanics of a point mass, the following is well-known.
Under a Galilean boost transformation, v → v + U (and x → x′ = x + U t
with U a constant vector), the first term of Λ is quasi-invariant, because the
factor K = 1

2
〈v, v 〉 is transformed to

K ′ = K +
d

dt
Δ, Δ = X(t,a) · U + 1

2
U2t. (58)

The term dΔ/dt does not affect the Euler-Lagrange equation, as noted before.
However, in quantum mechanics of Schrödinger equation for a wave function
ψ(t,x), invariance of the Schrödinger equation requires that ψ must be trans-
formed by

ψ′ = exp
(
i

�
Δ(t,x)

)
ψ(t,x).
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This states an explicit role played by the function Δ(t,x), yielding non-trivial
cohomology of the Galilei group (Azcárraga & Izquierdo 1995, Ch.3).

If K+dΔ/dt is used in the Lagrangian in stead of K, then we have invariance
with respect to the boost. The property of (58) will be reconsidered in §8.4
from a different point of view.

5 Variational principle in Eulerian space

5.1 Variation of fields

Variational principle requires that the action I is invariant with respect to
variations of the fields of v, ρ, s, φ, ψ and A. By substituting varied fields
v + δv, ρ + δρ, · · · and A + δA into Λ(v, ρ, s, φ, ψ,A) and subtracting
unvaried Λ, we obtain its variation δΛ, given by

δΛ = δv · ρ ( v − ∇φ− s∇ψ − w )

+ δρ (1
2
u2 − h− Dtφ− sDtψ − v · b )

− δs ρ Dtψ

+ δφ
(
∂tρ+ ∇ · (ρv)

)
− ∂t(ρ δφ) −∇ · (ρv δφ)

+ δψ
(
∂t(ρs) + ∇ · (ρsv)

)
− ∂t(ρs δψ) −∇ · (ρsv δψ)

+ 〈δA, L∗
Wω〉,

where the new term w is defined, with using (54), as

δLA
δvk

δvk = 〈∇ × Ψ, δv 〉 ≡ −ρ 〈w, δv 〉, (59)

Applying the principle of least action δ I = 0 for arbitrary variations of δv,
δρ, δs, δφ, δψ and δA, we obtain the followings:

δv : v = ∇φ+ s∇ψ + w , (60)

δρ : 1
2
v2 − h− Dtφ− sDtψ − v · b = 0 , (61)

δs : Dtψ ≡ ∂tψ + v · ∇ψ = 0 , (62)

δφ : ∂tρ+ ∇ · (ρv) = 0 , (63)

δψ : ∂t(ρs) + ∇ · (ρsv) = 0 , (64)

δA : L∗
Wω = 0 . (65)
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Using the continuity equation (63), the equation (64) reduces to

∂ts+ v · ∇s = Dts = 0 (adiabatic) . (66)

Thus, from the variational principle, the continuity equaiton (63) and the
isentropic equation (66) have been derived. In most traditional formulations
(Herivel 1955; Serrin 1959; Eckart 1960; Seliger & Witham 1968; Salmon 1988)
of variational methods, these equations are imposed as constraints by using
Lagrange multipliers.

From the Lagrangian LA, three new results are derived: (i) the expression
(60) of velocity v includes a new rotational term w, (ii) the vorticity equation
L∗
W [ω] = 0 has been derived from the variation of A, and (iii) the new term w

leads to the source of helicity H. The items (i) and (iii) are to be considered
in §6.2 below.

Using (60) for the expression of velocity v, the vorticity is given by

ω = ∇× v = ∇× (∇φ+ s∇ψ + w) = ∇s×∇ψ + ∇× w.

If the fluid is homentropic, and if the term w is omitted (equivalently if LA
is not taken into account), it is inevitable for us to obtain the solution ω =
0, that is an irrotational motion. It is generally understood that, even in
such a homentropic fluid, it should be possible to have rotational flows. The
Lagrangian LA serves the need perfectly.

However, in the traditional approaches, the above mentioned property is thought
as a defect of the formulation of Eulerian variation. In order to remedy this
(apparent) flaw, Lin (1963) introduced conditions which keep identity of par-
ticles denoted by a = (ak), with a Lagrangian represented as

∫
Ak ·Dta

k d3x.
This introduces three potentials Ak(x, t) as a set of Lagrange multipliers,
resulting in a generalized expression of Clebsh representation (Kambe 2007;
Clebsch 1859). But, physical significance of the potentials is not clear (Seliger
& Witham 1968; Bretherton 1970; Salmon 1988).

From the invariance properties in the a-space, corresponding equations in the
x-space have been derived as follows:

∂τ (d
3a) = 0 : ∂tρ+ ∇ · (ρv) = 0 , (67)

∂τ s = 0 : ∂t(ρs) + ∇ · (ρsv) = 0 , (68)

∂τ Ωa = 0 : ∂tω + ∇× (ω × v) = 0. (69)
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5.2 Noether’s theorem in the x-space

Invriance of the action with respect to variations of particle coordinates in
the x-space leads to the equation of momentum conservation. Suppose that
the particle coordinates x = X(t,a) are transformed infinitesimally to x′ as
follows:

x′(x, t) = x + ξ(x, t), (70)

where the coordinates of a particle a are transformed from X(t,a) to X ′ =
X(t,a) + ξ(X , t). It is required that the action I is invariant in this trans-
formation. What is changed with this transformation is only the expression of
Eulerian coordinates of particles. This is regarded as a gauge transformation
in the Eulerian space.

The invariance equations (1) and (3) are assumed implicitly. A volume element
d3x is transformed to d3x′ = (1 + ∂kξ

k)d3x up to linear terms. Hence the
volume variation is given by Δ(d3x) = ∂kξ

k d3x. On the other hand, variations
of density and entropy are given by Δρ = −ρ ∂kξk and Δs = 0 respectively.
Variation of velocity is Δv = Dtξ from (39).

Taking the variation (70) under the assumption that φ, ψ and Ψ are fixed,
the resulting variation of I is given by

ΔI =
∫

d4x

[
∂Λ

∂v
Δv +

∂Λ

∂ρ
Δρ+

∂Λ

∂s
Δs+ Λ ∂kξ

k

]
.

It is required that this vanishes for any arbitrary variation ξk. Substtuting
the expressions of Δv, Δρ and Δs mentioned above, we obtain the following
equation (after integrations by parts):

∂

∂t

( ∂Λ
∂vk

)
+

∂

∂xl

(
vl
∂Λ

∂vk

)
+

∂

∂xk

(
Λ − ρ

∂Λ

∂ρ

)
= 0. (71)

Similarly, for any arbitrary variations Δφ and Δψ, the invariance of I leads
to the continuity equaiton and the isentropic equation, already given by (63)
and (66) respectively.

Defining momentum density mk and momentum flux tensor M l
k by

mk =
∂Λ

∂vk
, M l

k = vl
∂Λ

∂vk
+
(
Λ − ρ

∂Λ

∂ρ

)
δlk , (72)

the equation (71) reduces to the following conservation equation of momen-
tum:

∂tmk + ∂lM
l
k = 0 . (73)
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We have mk = ρvk andM l
k = ρvkv

l+p δlk from (56) (vk = vk in the present case
of Euclidean space). Substituting these, we obtain the following conservation
equation for fluid momentum:

∂t
(
ρvk

)
+ ∂l

(
ρvlvk

)
+ ∂kp = 0 . (74)

Using (63), this reduces to Euler’s equation of motion:

∂tv
k + (vl∂l)v

k = −1

ρ
∂k p (= −∂k h). (75)

This is equivalent to (18).

Energy equation can be derived by a combination of the above equations.
Taking inner product of (75) with ρvk,

ρ ∂t
v2

2
+ ρvl∂l

v2

2
+ vk∂k p = 0.

Adding the continuity equation (63) multiplied by v2/2 to this equation, and
using dp = ρ dh from (4), we obtain

∂t

(
ρ
v2

2

)
+ ∂k

(
ρvk

v2

2

)
+ ρvk∂k h = 0. (76)

From the first of (4) and using the definition h = ε+ p/ρ,

∂t(ρε) − h ∂tρ = ∂t(ρε) + h ∂k(ρv
k) = 0.

Adding this to (76), we obtain the following conservation equation of energy:

∂t
[
ρ(1

2
v2 + ε)

]
+ ∂k

[
ρvk (1

2
v2 + h)

]
= 0. (77)

This is equivalent to (15) (Kambe 2008a).

6 Invariants: LA and Helicity

We consider in this section that the Lagrangian LA and helicity H are in fact
invariants, and that both of them are related to each other.
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6.1 Helicity (Topological invariant)

Using the one-form V1 and two-form Ω2 = dV1 defined in §3.3, one can define
the following three-form H3 on a three-dimensional manifold:

H3 = V1 ∧ Ω2,

Let us take differntial of H3. Since dV1 = Ω2 and dΩ2 = d2V1 = 0, we have

dH3 = dV1 ∧ Ω2 − V1 ∧ dΩ2 = Ω2 ∧ Ω2 = 0, (78)

since the manifold is three-dimensional. Namely, H3 is a closed three-form.
Hence we have Cohomology classes of H3.

In fact, replacing A1 of (34) and (41) with V1 (defined by (28) and (29)), we
obtain

H3 = V1 ∧ Ω2 = 〈V a, Ωa〉 d3a, = 〈v, ω 〉 d3x. (79)

This H3 may be called as a helicity three-form. Operating ∂τ and using (32)
and (33), we have

∂τH
3 = ∂τV1 ∧ Ω2 − V1 ∧ ∂τΩ2 = −dF 0 ∧ Ω2 = −d(F 0Ω2). (80)

(F 0 is a zero-form defined by −1
2
v2 + h.) Helicity H is defined by integrating

(79):

H[V1, dV1] ≡
∫
H3 =

∫
M(a)

〈V a, Ωa〉 d3a =
∫
M(x)

〈v, ω〉 d3x = H[v,ω].

Differentiating this with respect to τ and using (80),

∂τH =
∫
∂τH

3 = −
∫
M

d(F 0Ω2) = −
∫
∂M

F 0Ω2.

The right hand side is a surface integral over ∂M bounding M , and vanishes
in the following cases: (a) M is unbounded, and v and ω decay sufficiently
rapidly, or (b) M is bounded with peiodic boundary conditions. In these cases,
H is a time invariant.

The equations (78) and (80) are equivalent to the conditions for the Secondary
invariant of Chern-Simons (Chern 1979). H[v,ω] is a topological invariant, and
a set of H[v,ω] constitutes a class of cohomology.
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6.2 Source of helicity

Present formulation enables us to identify the helicity source. Using (48), −Ψ
can be written as

−Ψ = LWA = ∂tA + (∇× A) × v + ∇(Akv
k).

By defining a vector B by ∇× A, we have

B =∇× A,

−∇×Ψ= ∂tB + ∇× (B × v) ≡ L∗
W [B]. (81)

These are written in the following differential forms respectively:

B2 =dA1 = B · s2 = Ba · S2, (82)

−dΨ1 = ∂τB
2 = LWB2 = L∗

W [B] · s2, (83)

where the notations of (30) and (31) are used for S2 and s2, and Ψ1 is defined
in (47). The right hand side of (83) is obtained from (43) by repacing Ω2 with
B2.

In order to obtain an explicit expression of w, we substitute the variation
v + δv into v of LA represented by (54) where Ψ is kept fixed. From (59), the
variation of LA is

δLA =
∫
M

〈∇ ×Ψ, δv〉 d3x = −
∫
M

ρ 〈w, δv 〉 d3x.

Therefore, w is given by

ρw = −∇× Ψ = L∗
W [B]. (84)

Total velocity defined by (60) is

v = ∇φ+ s∇ψ + w, w = −1

ρ
∇×Ψ. (85)

Suppose that the entropy takes a uniform value s = s0. Then we have v =
∇Φ + w (where Φ = φ+ s0ψ), and the vorticity is given by

ω = ∇× w. (86)

In this case, the helicity is

H =
∫
V
〈ω, v〉 d3x =

∫
V
〈ω, w〉 d3x =

∫
V
ρ−1 〈ω, L∗

W [B]〉 d3x. (87)
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Here, the term ω · ∇Φ = ∇ · (Φω) is omitted since it is transformed to a
vanishing surface integral in the cases (a) and (b) of §6.1. The above integral
(87) expresses that the inner product of ω with

L∗
W [B] = ∂tB + ∇× (B × v) (B = ∇× A) (88)

(devided by ρ) gives the helicity source.

6.3 Case of an incompressible fluid

If the fluid is incompressible (ρ = ρ0 = const ), and in addition if the entropy
is uniform (s = s0 = const ), the velocity v has a scalar potential Φ and a
vector potential Ψ∗. In fact from (85), we have

v = ∇Φ + ∇× Ψ∗ = ∇Φ + w∗, (89)

where Φ = φ + s0ψ, and Ψ∗ = −Ψ/ρ0, and the rotational component w∗ is
represented by

w∗ = ∇×Ψ∗ =
1

ρ0
L∗
W [B], (90)

from (84). In order to rewrite the helicity, we define one-form W 1 dual to the
velocity w∗ by

W1 = w∗ · dx =
1

ρ0
L∗
W [B] · dx, (91)

according to the notations of (28) and (29), and (90). We have the equality:

L∗
W [B] · dx = ∂τBa · da = ∂τB

1, B1 ≡ Ba · da, (92)

which is implied by (82) and (83). Then the helicity is given by

H =
∫

W1 ∧ Ω2 =
1

ρ0

∫
V
〈L∗

W [B], ω〉 d3x =
1

ρ0

∫
V
〈∂τBa, Ωa〉 d3a, (93)

(ω = ∇×w∗), where V1 is replaced by W1 since the potential part ∇Φ gives
vanishing contribution to H.

The Lagrangian LA = − ∫M〈∂τAa,Ωa〉d3a is written in the x-space variables
by (49), which is rewritten again as

LA = −ρ0

∫
M
〈Ψ∗, (∇× w∗) 〉 d3x = −ρ0

∫
M
〈w∗, w∗ 〉 d3x + IntS, (94)

by integration by parts. It is found that −1
2
LA is equivalent to the kinetic

energy of rotational component w∗, apart from the surface integral term IntS.
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6.4 Electrromagnetic analogy

In order to seek a relation between H and LA, we define one-form A1 on a
four-dimensional manifold (τ,a):

A1 = Φ dτ + A1, A1 = Aa da+ Ab db+ Ac dc.

Applying the exterior derivative d4 defined by (35), we obtain a two-form F2

as

F2 = d4A1 =dΦ ∧ dτ + dτ ∧ ∂τA1 + dA1

=E1 ∧ dτ +B2.

where

E1 = −∂τA1 + dΦ ⇒ Ea = −∂τAa + ∇aΦ, (95)

B2 = dA1 ⇒ Ba = ∇a × Aa. (96)

The vector equations on the right of the arrow ”⇒” are equivalent expressions
derived from the equations of differential forms on its left, where Aa is defined
in §3.4.

Operating d4 on F2 and using d4F2 = d 2
4A1 = 0, we obtain

0 = d4F2 = (dE1 + ∂τB
2) ∧ dτ + dB2. (97)

Since dB2 = d2A1 = 0, we find the following equation:

dE1 + ∂τB
2 = 0 ⇒ ∇a × Ea + ∂τBa = 0. (98)

This is equivalent to the form of Faraday’s law in the electromagnetism. Sub-
stituting the expression (95) for Ea into the vector equation on the right, we
obtain ∂τBa = ∇a × ∂τAa.

The helicity of (93) is rewritten by using (98) as follows:

H =
1

ρ0

∫
V
〈∂τBa, Ωa〉 d3a = − 1

ρ0

∫
V
〈∇a × Ea, Ωa〉 d3a. (99)

On the other hand, using the relation ∂τAa = −Ea+∇aΦ obtained from (95),
the Lagrangian LA of (38) can be rewritten as

LA = −
∫
M
〈∂τAa, Ωa〉 d3a =

∫
M
〈Ea −∇aΦ, Ωa〉 d3a =

∫
M
〈Ea, Ωa〉 d3a,

(100)
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where the term Ωa · ∇aΦ = ∇a · (ΦΩa) is neglected, because it is transformed
to surface integrals.

Now, it has become clear that the helicity H and the Lagrangian LA are not
independent to each other, but that there is a relation between them. The
latter depends on the field Ea (an electric-like field) linearaly, whereas the
former depends on ∂τBa linearaly (Ba: a magnetic-like field). The two fields
Ea and Ba are related by (98). Therefore, if one of them exists, the other
also exists. In the traditional fluid mechanics, although the helicity H was
investigated in detail, the Lagrangian LA has never been considered explicitly.

6.5 Time invariance of H and LA

Assuming that the fluid is incompressible and homentropic, the one-form V1

is

V1 = daΦ + W1 = daΦ +
1

ρ0

∂τB
1,

from (89), (91) and (92), where daΦ = ∇aΦ · da. From this, we have

Ω2 = dV1 = dW1 =
1

ρ0
∂τ (dB

1). (101)

Since the vorticity two-form Ω2 = dV1 is time invariant, the above can be
integrated immediately, and we obtain the following for dB1:

dB1 = ρ0 Ω2 τ ⇒ ∇a × Ba = ρ0 τ ∇a × W a(a), (102)

where W a is a vector dual to W1 = W a · da, which should be τ -independent
because Ω2 = dW1 is so. Solving the vector equation of (102), we obtain

Ba = ρ0τ W a(a), (103)

where an inessential gradient term is dropped on the right hand side. Thus,
we find

∂τBa = ρ0 W a(a). (104)

In view of the relation Ba = ∇a × Aa, we have

∂τAa = ρ0 α(a) + ∇aφa, ∇a × α = W a. (105)

where α(a) is τ -independent, and φa(a) a scalar function.
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Substituting (104) into (99),

H =
∫
V
〈W a(a), Ωa(a)〉 d3a. (106)

Substituting (105) into (100),

LA = −
∫
M
〈∂τAa, Ωa〉 d3a = −ρ0

∫
M
〈α(a), Ωa(a)〉 d3a. (107)

Thus, it is found that H and LA are τ -independent constants.

7 Uniqueness of transformation

Local transformation from the Lagrangian a-space to the Eulerian x-space
is determined uniquely by nine components of the 3 × 3 matrix ∂xk/∂al, as
noted in §2.4. However, the solutions given in the beginning at §2.3, we had
six relations including the nine components. Namely, we had three relations
of (12) between v = (Xτ , Yτ , Zτ ) and (Va, Vb, Vc), and another three relations
of (16) between A = (Xττ , Yττ , Zττ ) and (Aa,Ab,Ac).

In §2.3, vorticity field was not taken into consideration in the Euler-Lagrange
equations: (11) and (15). This is because fluid particles are fixed by definition
in the (a, b, c) coordinate space. However in the (x, y, z) space, there is local
rotation of fluid particles. Transformation between the two spaces must take
into account the local rotation.

Remaining three relations are given by the equations connecting the a-space
vorticity, Ωa(a) = (Ωa, Ωb,Ωc) of (30), with the x-space vorticity, ω =
(ωx, ωy, ωz) of (31). For example, Ωa is given by the following:

Ωa =ωx (∂by ∂cz − ∂cy ∂bz) + ωy (∂bz ∂cx− ∂cz ∂bx)

+ ωz (∂bx ∂cy − ∂cx ∂by). (108)

There is a set of three vectors (velocity, acceleration and vorticity) in each
of a-space and x-space, which are determined by evolution equations subject
to given initial conditions in each space. For each of the three vectors, there
are three transformation relations at each point between components of each
space. These nine equations are necessary and sufficient to determine nine
matrix elements ∂xk/∂al locally. Thus, the transformation between the a-
space and the x-space is determined uniquely (Kambe 2008a).
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8 Gauge symmetries（Translation symmetry and rotation symme-
try）

First, Lagarangian density Λ defined by (56) or (57) are reproduced here:

Λ≡ 1
2
ρ 〈v,v〉 − ρε(ρ, s) − ρDtφ− ρsDtψ − 〈LWA, ω 〉. (109)

Translation symmetry is investigated first in the sections 8.1 to 8.4. Then,
rotation symmetry is considered in §8.5 and 8.6. Our target is to verify the in-
variance property of Λ with respect to the transformations of both translation
and rotation.

8.1 Local gauge transformation (translation)

Suppose that there are two Eulerican coordinate frames F and F ′. We consider
a transformation of the position coordinate x of F to x′ of another frame F ′.
Suppose that the transformation is given by

LGT : x′(x, t) = x + ξ(x, t), t′ = t. (110)

This is regarded as a local gauge transformation LGT between two non-inertial
frames of reference F and F ′. In fact, it means that the position coordinate x
of a fluid particle in the frame F is transformed to a new position coordinate
x′ given by X ′

a(Xa, t) = Xa(t)+ξ(Xa, t) in the frame F ′. Therefore, its velocity
v = (d/dt)Xa(t) is transformed to

v′(x′)≡ d

dt′
X ′
a =

d

dt

(
Xa(t) + ξ(Xa, t)

)
= v(Xa) + (d/dt)ξa, (111)

(d/dt)ξa = ∂tξ + (v · ∇)ξ
∣∣∣∣
x=Xa

, ξa ≡ ξ(Xa, t). (112)

This is a transformation between two coordinate values of the same particle
described by two different frames of reference F and F ′. Physically, two vectors
x and x′ denote the same point, represented by the same value of Lagrange
coordinte a. Namely, we are considering a gauge transformation between two
reference frames.

According to the transformation (110), the time derivative ∂t and space deriva-
tive ∂k = ∂/∂xk in the frame F are related to the derivatives ∂t′ and ∂′k =
∂/∂x′k of F ′ as follows:
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∂t = ∂t′ + (∂tξ) · ∇′, ∇′ = (∂′k), (113)

∂k = ∂′k + ∂kξl ∂
′
l, ∂′k = ∂/∂x′k . (114)

The transformation LGT of (110) is also called a local translational transfor-
mation.

8.2 Gauge invariance of Dt

The operator Dt ≡ ∂t+(v ·∇) is invariant with respect to LGT: i.e. Dt = D′
t.

In fact from (111) and (114), we have

v · ∇ = v · ∇′ + (v · ∇ξ) · ∇′ = v′(x′) · ∇′ +
(
− (dξ/dt) + v · ∇ξ

)
· ∇′,

where v = v′ − dξ/dt is used. The last term is rewritten as

(
− (dξ/dt) + v · ∇ξ

)
· ∇′ = −∂tξ · ∇′ = ∂t′ − ∂t,

by using (112) and (113). Hence, we have

∂t + v · ∇ = ∂t′ + v′ · ∇′. (115)

This means that the operator Dt satisfies the invariance with respect to local
translational transformations, i.e. the translation symmetry. Thus, the opera-
tor Dt is the covariant derivative in the sense of gauge theory (Weinberg 1995;
Kambe 2007).

The particle labels ai(t,x) (i = 1, 2, 3) are scalars, and move together with
the material particle with the velocity v = ∂tX(t,a). Hence, we have

Dta
i = ∂ta

i + (v · ∇)ai = 0,

always. Writing the particle position as x = X(t,a), we have

Dtx = DtX(t,a(t,x)) = ∂tX(t,a) + Dta · ∇aX = ∂τX(τ,a) = v. (116)

where (∇aX) = (∂Xk/∂al). Thus, we have the equality: ∂τ = Dt = ∂t+(v·∇),
which was used already.

Velocity v can be defined by Dtx. In fact, operating D′
t′ on the equation (110)

and using D′
t′ = Dt, we obtain

v′ = D′
t′x

′ = Dt(x + ξ) = v + Dtξ. (117)

This coincides with (111). Thus, the particle velocity is defined by v(x, t) =
Dtx.
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8.3 Gauge transformation (a general formulation)

Suppose that we have a group G, and consider the following transformation
by its element g ∈ G.

(a) A field u(x) is defined on a manifold M . Suppose that the coordinate
x ∈ M is transformed to x′ = gx by g ∈ G, and the field u to u′ defined by
u′g = gu simultaneously. Then we have

u′(x′) ≡ u′g x = gu x = gu(x) (118)

This means that u is transformed in the same way as the coordinate x.

(b) Next, suppose that a field of group element g(x) (where g ∈ G) is defined
at each point x ∈M , and u(x) is transformed according to u′g = gu.

In addition, in place of the partial derivative ∂t (with respect to time), we
define a covariant derivative Dt = ∂t + A by introducing a gauge field A. Its
transformation is assumed to be given by

D′
t′ g = gDt,

where D′
t′ = ∂′ + A′ and ∂′ = ∂/∂t′. Operating the left side on u, we obtain

D′
t′ g u = D′

t′ u
′g. Equating this to the right side, we have

D′
t′ u

′g ≡ (Dtu)
′g = gDtu. (119)

This means that Dtu is transformed with the same way as u.

In the example of the previous section where g is LGT , by setting u to be
the particle coordinate x, Dtu corresponds to the velocity v, and the equation
(117) can be written as

v′(x′) = D′
t′x

′ = gDtx = g v(x),

where gv is defined by v + Dtξ. We consider this kind of transformations
below.

8.4 Translation symmetry

Aim of this subsection is to verify that Λ is invariant with respect to LGT
where the coordinate x transforms according to (110), and the velocity v
according to (117). In regard to the first term 1

2
ρ〈v, v〉, a special consideration

is necessary as noted in §4.3. A Galilean transformation between two frames of
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reference in relative motion with a constant velocity U is given by ξ = U t and
v′ = v+U . Substituting the latter in 〈v′,v′〉, we have 〈v,v〉+2〈v,U〉+〈U ,U〉,
in which no invariance is seen. This problem is to be resolved by a relativistic
Lorentz transformation, as follows.

Galilean transformation is regarded as a limiting one of the Lorentz transfor-
mation of space-time (xμ) = (t, x) as v/c→ 0 (c: light speed). In the limit of
v/c→ 0, a Lorentz invariant Lagrangian takes the following form denoted by

Λ
(0)
L (Landau & Lifshitz 1987):

Λ
(0)
L dt = dt

∫
M
ρ(x)

{
1
2
〈 v(x), v(x) 〉 − ε− c2

}
d3x .

First two terms in the bracket { } are equivalent with those of (109). The third
term −c2dt ρd3x = −c2dt d3a is necessary for the Lorentz invariance in which
t is transformed simultaneously with x. But it may be omitted for the Galilean
invariance, since the mass element d3a is invariant and t′ = t in LGT. Hence
the third term may be neglected, and the first two terms are understood to be
invariant with respect to the Galilean transformation. This invariance is valid
locally at each point and time.

Remmaining three terms of (109) do not influence the outcome of the action
principle, as explained in §2.5 and 3.4, since those are integrated with respect
to the time. It is remarkable that those three have transformation invariance
locally as well, i.e. LGT-invariance. In fact, we can write as gρ = ρ, since the
density ρ is a scalar field. Setting u = ρ, the transformation (118) is written as
ρ′(x′) = gρ(x) = ρ(x), showing its gauge inavriance. Other scalar fields such
as s(x), φ(x) or ψ(x) are also gauge inavriant as well. Further more, LGT-
invariance of the operator Dt is already shown by (115). Thus, it is found that
the third and forth terms have the LGT-invariance.

In regard to the last term of (109), we note the following equality from (38)
and (49):

〈LWA, ω 〉 d3x = 〈∂τAa, Ωa〉 d3a. (120)

The right hand side is independent of τ and a function of a only, which is
shown in §6.5 by (105) and (107). Therefore, it is gauge invariant because a
is invariant of LGT and ∂τ = Dt is invariant too. Therefore, the last term has
the LGT-invariance.

Thus, it has been found that Λ of (109) has the translation symmetry.
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8.5 Rotational gauge transformation

Rotational symmetry of fluid motions is represented by the rotation group
SO(3). Infinitesimal rotations are expressed by Lie algebra so(3). The algebra
so(3) is three-dimensional with a set of bases (e1, e2, e3) satisfying the following
commutation law:

[ ej , ek ] = εjkl el , (121)

where εjkl is the third-order completely skew-symmetric tensor. The bases
(e1, e2, e3) are represented by the following skew-symmetric matrices:

e1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

0 0 −1

0 1 0

⎤
⎥⎥⎥⎥⎥⎦ , e2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1

0 0 0

−1 0 0

⎤
⎥⎥⎥⎥⎥⎦ , e3 =

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0

1 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (122)

A rotation operator is defined by θ = θkek:

θ = (θij) ≡ θk ek =

⎡
⎢⎢⎢⎢⎢⎣

0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0

⎤
⎥⎥⎥⎥⎥⎦ ,

where θk (k = 1, 2, 3) are infinitesimal parameters, and θij is a skew-symmetric
matrix with θij = −θji. Infinitesimal rotation of a displacement vector s =

(s1, s2, s3) is given by θs, which is also represented by the vector product θ̂×s,
with an infinitesimal angle vector θ̂ = (θ1, θ2, θ3).

Consider local rotation around an arbitrarily-chosen reference point x0 within
the fluid. Neighboring points are represented as x0 + s with s being an in-
finitesimal coordinate vector s. Consider local rotation of the neighborhood
of x0, expressed by s → s′ = s + δs. In a rotational transformation, δs is
represented by

δs = θ s = θkek s, (123)

equivalently expressed by δs = θ̂ × s, with θ̂ = θ̂(t) an infinitesimal rotation
angle.

This is regarded as a gauge transformation from a point s of a frame F to a
point s′ of another frame F ′ at identical times:

s′(s, t) = s + δs(s, t), t′ = t. (124)
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From this, the velocity v = Dts is transformed as follows:

v′(s′) = (Dt)
′s′ =Dt(s + δs) = v(s) + δv(s), (125)

δv(s) =Dtδs ≡ ∂tδs + (v · ∇s

)
δs = (∂tθ)s + θv, (126)

where ∇s = (∂/∂si). Like the LGT of §8.1, two position vectors s and s′

denote an identical point expressed differently in two different frames F and
F ′. Their coordinates are different, but their particle coordinates shares the
same a. This means that the frame F ′ is rotated by an angle −θ̂ with respect
to the frame F sharing the same origin x0.

From (125) and (126), at the origin x0 (s = 0) we have the velocity v = v(0),
and its variation

δv(0) = θ v = θkekv. (127)

Transformations of s and v are given from (123) and (127) by

s′ = r s , s′i = rij sj , (128)

v′ = r v, v′i = rij vj, (129)

where r = I + θ with I = δij (unit matrix) and θ = θij , i.e. rij = δij + θij . It
is found that the pair set of s and v have a common transformation property
like that of x and u of 8.3 (a).

8.6 Rotation symmetry

Inner product is invariant by rotational transformations of SO(3) (by defini-
tion). Choosing an element r = (rij) ∈ G = SO(3) and taking two vectors u
and v, we write the transformation by u′ = ru = rijuj and v′ = rv = rijvj
respectively. Their inner product 〈u, v〉 = δijuivj is invariant with respect to
the rotational transformation (δij : Kronecker’s delta). In fact, we have

〈u′, v′〉 = 〈ru, rv〉 = 〈u, v〉,

which reduces to the relation of matrix elements (of SO(3)): δijrikrjl = δkl.
This is valid within linear approximation to rij = δij + θij of the previous
section. Owing to the antisymmetry of θij and their smallness, we have

δijrikrjl = δkl + θkl + θlk +O(|θ|2) = δkl +O(|θ|2).

This leads immediately to the rotational invariance of the first term 〈v, v〉
of (109). In addition, its last term represented by (120) is also rotationally
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invariant, because it is of the form of an inner product. The invariance is also
obvious since it is a function of a only and a is unchanged by rotational gauge
transformations.

Scalar fields such as ρ, s, ε, φ and ψ are invariant. The reason is as follows. In
a rotational transformation r, a scalar field u(x) is transformed to u′ = ru = u
(no change of its functional form), and the equation (118) means the invariance
u′(x′) = u(x).

Remaining issue is about the operator Dt, defined by Dt = ∂t + vk ∂k. The
second term is a scalar product, hence it is rotationally invariant (omitting
its mathematical detail of verification). Therefore, we have the invariance:
D′
t′ = Dt.

Summarizing the aboves, it is found that Λ of (109) has the rotation symmetry.

9 Summary and discussions

Vaiational principle is reformulated, according to the gauge theory of theo-
retical physics, for the motions of an ideal fluid on the basis of newly defined
Lagrangians and covariant derivative. This new variational formulation is su-
perior to most traditional ones in the following three aspects. (i) The formu-
lation is based on the symmetries (of translation and rotation) of the flow
fields. (ii) It does not include Lagrange mutipliers to impose constraints. This
is an advatage because physical meaning of the mutipliers are not clear. And
(iii) the rotational part of velocity field is taken into account naturally by
a new Lagrangian. Thus, the formulation is reasonable in physical sense and
consistent as a whole for description of flow fields of an ideal fluid.

The Lagrangian functional is defined initially by a combination of total kinetic
energy and internal energy in the space of particle coordinates (denoted as a
space), and the action is given by its time integral. Noether’s theorem leads
to the equation of motion and an energy equation. In most traditional formu-
lations, the continuity equation and an entropy equation are added as con-
straints by using Lagrange multipliers to the action integral. However, in the
new formulation, those equations are derived from the variational principle,
rather than being given as constraints. To that end, additional Lagrangians
are introduced by symmetry consideration.

In the present formulation, the newly added Lagrangians are determined such
that it is invariant with respect to both translational and rotational transfor-
mations, where the following three properties are taken into consideration: (a)
mass is an invariant of motion, (b) entropy per unit mass is another invariant
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of motion owing to the definition of an ideal fluid, and (c) vorticity Ωa in
the a-space is invariant, which is derived by requirement of gauge invariance
of the action in the a-space. The new three Lagrangians thus introduced are
of such forms that the action integrals associated with those Lagrangians are
integrated with respect to time in the a-space. So that, the newly added terms
do not influence the Euler-Lagrange equation in the a-space. However, from
the action principle in the space of Eulerian coordinates x, the continuity
equation and an entropy equation are derived, since the time derivative in
the Lagrange space is replaced with the covariant derivative (i.e. the material
derivative) including velocity components, and the mass density is a function
of x and time t.

The third property (c) is important in the sense that the vorticity is a gauge
field associated with the rotation symmetry of the flow field, and that the
vorticity equation is derived from the Lagrangian LA associated with (c).
Thus it is seen that the vorticity equation is the equation for the gauge field
of rotation symmetry.

The fact that vorticity field must be considered independently of the veloc-
ity field is necessary from the following property. In each space-time of the
Lagrangian and Eulerian descriptions, three vectors of velocity, acceleration
and vorticity can be determined. Thus, we have nine tranformation relations
at each space-time between each pair of the three vectors, from which nine
coefficients ∂xk/∂al of transformation can be fixed locally (at each space-time
point). With using the local nine coefficients, transformation between a-space
and x-space is determined locally and uniquely.

It was shown in §6 that the Lagrangian LA and the helicity H are related
to each other in the sense that, when one exists, then the other also exists.
It is verified that both of the integrals are time-invariant, by using the time-
invariance of Ωa. In traditional fluid mechanics, although the helicity H was
investigated in detail, the Lagrangian LA has never been considered explicitly.

Thus, it has been shown that the present formulation is consistent as a whole
to describe flow fields of an ideal fluid.
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